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6'-function perturbations and Ne&+ boundary conditions 
by path integration 
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Abstraci S'-function permrbations and Neumann boundqwnditions cm inwrporaCed into th 
path integral formalism. The s&ng pint  is consideration of the path integral representation 

, for the onedimensionid Dirac panicle together with i relativistic p i n t  interaction. The m- 
relativistic limit yields either the u d  S-function or a 6'-function permrbatioon; making their 

 strengths infinitely repulsive one respeaively obtains either Dirichlet or Neumann boundary 
conditions in the path integral. 

Attempts to incorporate Dirichlet and Neukmn boundary conditions into the path integral 
 formalism have been described, for example, in Barut and Duru [I], Clark et al [2j and 
Caneau et al 131. Barut and Duru used a canonical !"formation to Hamilton-Jacobi 
coordinates in a phasespace pat+ integral to perform the path integmtion as explicitly as 
possible yielding an integral representation of the Feynman kernel; they could also discuss 
step potentials within their formalism. In [2,3] general boundary conditions were addressed, 

In a previous paper I have discussed how to implement Dirichlet boundary conditions 
into the path integral [4]. This was achieved by considering a onedimensional &function 
perturbation in the path integral. This problem can be solved in a straightforward manner 
by means of a perturbation expansion [5-9] which can be explicitly summed yielding the 
corresponding (energy-dependent) Green function G@)(E)  in terms of the non-perturbed 
one G(V) (E) ,  where V refers to an arbitrary potential which can be included [9]. Making 
the strength of the 6-function infinitely repulsive yields D ~ c h l e t  boundary conditions at the 
location of the &function perturbation [lo, 111. It is also desirable to have an analogous 
representation for a &function perturbation. Making in this case the strength of the coupling 
infinitely~repulsive produces Neumann boundary conditions at the location of the 6'-function. 
However, the problem becomes awkward if one hies to use reasoning similar to that for the 
usual 6 ,  for a #-function perturbation in the path integral. An expansion into a perturbation 
expansion yields in tk la ted  complicated terms with no obvious resolution of the summation 
problem. Altematively, an approximation of the S'-function in terms of two normal 6- 
functions with distance E <( 1 and performing the limit E < 0 does not make sense in an 
obvious way. Bearing this in mind and' the fact that the existing literature conceming 6'- 
function perturbations and Neumann boundary conditions in the path integral does not look 
satisfactory, something new is needed and one has to look for an appropriate regularization 
procedure to fill the gap. 

but only for the free particle case. I 

0305-4470/95/030W9tM$19.50 @ 1995 1OP Publishing Ltd L99 



L100 Letter to the Editor 

In this letter this problem is addressed by means of the path integral representation of 
the onedimensional Dirac particle [5]. The incorporation of a point interaction yields a two- 
parameter family for the corresponding self-adjoint extension [lo, 121: as particular cases, 
one c q  choose, say, either +e up (electron) or the down (positron) component for,the point 
intekction to'act upon. 'Considering a perkcbation expansion for both problems, it is found 
that they can be explicitly summed'in terms of the corresponding Green functions (which 
are 2 x 2 matrices). In the non-relativistic l i t  the former case yields the usual &function 
perturbation, whereas in the latter we obtain the equivalent of a #-function perturbation in 
the path integral. I will concentrate on the latter case. 

In the following I will outline how to implement point interactions in the one- 
dimensional Dirac particle path integral. We automatically 'obtain in the case of the 8'- 
function perturbation a correct regularization prescription in terms of the unperturbed Green 
function G(')(E). The general method for the time-ordered pe$ubation expansion is quite 
simple. We assume that we have a potential W(x)  = V(x) + V(x) in the path integral and 
we suppose that W is so complicated that a direct path integration is not possible. However, 
the path integral KCv) corresponding to V(x) is assumed to be known. We expand the path 
integral containing V ( x )  in a perturbation expansion about V ( X )  in the foliowing way. The 
kitial kemel corresponding to V propagates in time At  unperturbed, then it interacts with 
V, propagates again for another time At unperturbed, and so on, up to the final state. This 
gives the series expansion 15-91 (x E R) 

' 

x K'V'(x,,x';t, -r')~(XI)K'V)(X2,XI;t2-tl) x ,.. 
x V(X~-~)K(~)(X.,X,-,; r,, - r._l)~(x.)~(v)(x",x,; t"- tn). 
- - 

(1) 

I have ordered time as t' = ro < t l  < tz < . . . c'f.+l =,t" and psd  attention to the fact 
that K(tj  - 9-1) is different from zero only if tj > tj-1. We consider the path integral 
representatioh for the one-dimensional Dirac-particle '[5,1%17] (px  = -fi&): 

K(?(x",x'; T )  = + mc2u, + V(X))  

I ,  X(t ' ' )=X" 

Du(t) exp ( - V(x) dt) . = s  *(t))=x' 

V may be a matrix-valued potential. The support property of the measure Du is defined in 
such a way that the motion it describes selects paths of N steps each of length CE (6 = T/N 
in the lattice representation) that start at x' in the direction a, and end at x" in the direction 
f l ,  where a and p take the values 'right' and 'left'. The path integration then is a summation 
over all reversings of directions [5]. ux, uy, uz are the Pauli matrices. We introduce the 
Green function GcV)(E) with its matrix representation 

G!y'(x'', x';  E) G$y'(x", x';  E) G'"(x", x'; E) 
, x';  E )  GZ'(x", x'; E) (3) 

We first consider a 8-function perturbation in the electron ('+') component, i.e. V+ = 

-CY (A :) 8(x -a). By inserting it into the path integral and summing the perturbation 
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expansion 'we obtain 

. .  LlOl 

From these represenations it is easily seen that if G\Y)(E) is of 0(1) for c --f CO, G\i'(E) 
and G g ) ( E )  vanish for c + CO as they are o( l/c and 0: 1/c2, respectively. 

We consider the limit c + CO in G(h)(E). On the one hand we h o w  that the path 
integral representation (2) gives the usual onedimensional path integral in non-relativistic 
quantum mechanics [5,13-17]: 

(8) 

where V ( x )  is the non-relativistic I n i t  of V&). In the language of stochastic processes, 
the measure Du yields in the limit c + CO the measure DW[x] (W being a Wiener 
process, taken in real time, respectively, Wick rotated) which following [5] is interpreted 
in the usual way as Dxexp((i/h)A? i'dt), see, e.g., [18]. In the present case we find 
[lo, 121 V+(x) + V&) = --(~8(x - U ) ,  and V-(x) + V&) = -,!G'(x-n), respectively. 
However, we find that only the ( 1 , l )  component in the Green functions remains finite, 
all others vanish. Furthermore, we find G P ) ( E )  -+ G@)(E) and G16;'(E) --f G@')(E),  
where G@)(E)  is the Green functlon for a potential problem V with the usual 8-function 
perturbation in non-relativistic quantum mechanics, and G@')(E) is the Green function 
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for a potential problem V together with a #-function perturbation, respectively. Putting 
everything together we obtain for the latter an explicit path integral representation yielding 

Gr)(x", x'; E )  = - 

&!;;(a, a; E )  = [a,a,~(~)(~, y; E )  - 2ms(x - y ) / ~ ~ ] l ~ = , ~ .  (11) 

The path integral (9) has thus been derived in a unique way through the regularization (5) in 
the limit c + W. Note that (1 1) automatically yields the correct (ultra-violet) regularization 
of the formal expression 'G!:J(a,a; E)'. For V = 0, i.e. the &ex particle, we obtain the 
explicit representation 

For the propagator we obtain (using [19] p 246) 

(Ix" - a[  + Ix' - al) + - - 

T sign(x" -a )  sign(x' -a )  
A 2m3,92 R6 1 h2 - al + Ix' -all + -- 

+ dp exp ( - i g T )  (sin px' sin pxN + cos in' cos pxn 
2Z 
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For p z 0, there is one bound state which his energy E = -h6/2m3p2.' The case p = 0, 
i.e. the free particle on the real line is easily recovered in equations (12) and (14). This 
case is also reproduced in (13) by a proper p + 0 limiting procedure, which (14) provides. 

Repeating the procedure for N-fold 6'-function pewbations similarly gives (compare 
also [lo], ai # aj (i # j)) 

.~ 
Letter to the Editor 

. ,  

Of course, ady combination' of k-fold &function and M-fold #-function perturbations is 
possible yielding a closed expression in terins of the corresponding Green functions; 

Now makingihe coupling  of the &'-function perhirbation' infinitely repulsive producw 
Neumann boundary conditions at x = a, $us decoupling the regions (--CO, a) and (a. &), 
i.e. . ~. , 

= G(")(x", x';  E) - G$'(x", a; E ) G ~ ~ ) ( a ,  x'; E)/&$L,,(a, a; E ) .  (16) 

The notation Z?:% stands for Neumann, boundary conditions at x = a, and for the 
corresponding Green function in shorthand we write G!!?,"(E)..Note that G?(E)' 

combination .~ of bounday conditions . .  . of a pa+cle 'moving,~in the box a < x < b is allowed . .  
yielding closed expression in terms of the corresponding G+n functions. . ,,, . ,.' 

It is now obvious how to describe potential problems with absolute value dependence, 
i.e. V = V(lx[). Combining the results.for Dirichlet and Neumann boundary conditions we 

' - - G$:F)(E), where D stands for,Dirichlet boundary conditions '14,111. Of course, any 

, >  obtajn the.genera1 formula . - I  , .. 

. . . ~. .~ . .  
If &e potential V already contains only even powers in x ,  such as the harmonic oscillator, 
the,last two terms in (17) cancel. Simple examples forthe general case are, for instance, 
the double oscillator V ( x )  = imo2(1x1 - a)'; the one-dimensional Coulomb problem 
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V(x)  = klxl. or the symmetric potential well. For the onedimensional Coulomb problem 
one obtains, e.g., the quantization condition 

with U = $, $ for the odd and even wavefunctions, respectively 
In this letter I have presented a perturbation expansion approach to the problem of 6’- 

function perturbations and Neumann boundary conditions in the context of path integrals. 
This was achieved by considering the path integral representation of the one-dimensional 
Dirac particle with a 6-function perturbation in the electron and posimn components, 
respectively V+ and V-. I obtained the closed formulae (4). (5) for both problems in terms 
of the corresponding energy-dependent Green function. For V- a #-function perturbation 
emerged in the non-relativistic limit in the path integral (9). Of course, both Green functions 
represent Krein’s formula for the problem in question. Tkis shows in a nice way that 
in comparison to the SchrMinger equation approach a properly defined (and regularized 
if necessary) path integral provides a global picture of the problem in question, thus 
giving comprehensive information about the physical system. However, whereas Krein’s 
formulae are usually derived by means of functional-analytical methods [IO], we obtain 
them by summing perturbation expansions. The necessary ingredients are the path integral 
formulation of the onedimensional Dirac particle, including its non-relativistic limit, and 
knowledge of Green’s function for the onedimensional free Duac particle. No additional 
assumptions have been made. An analogous discussion for the electron component yields a 
8-function perturbation in the path integral and Dirichlet boundary condition, respectively. 
The formalism can be repeated in an obvious way to incorporate multiple 8- and #-function 
perturbations, and one can consider motion in a box a < x < b with any combination of 
Dirichlet and Neumann boundary conditions at the walls of the box. Analogously to [ I l l  
one can also generalize OUT method to higher dimensions to derive path integral formulations 
for 6’-function perturbations, Dirichlet and Neumann boundary conditions along lines and 
hyperplanes, etc. 

I could also derive a general expression for potentials with absolute value dependence 
by combining the results from Dirichlet and Nenmann boundary conditions, cf (17). In 
general, only the corresponding Green function can be stated. 

The definition of the path integral of the 8’-function perturbation and its (energy- 
dependent) Green function via the path intepal representation of the onedimensional Dmc 
particle looks at first sight circumstantial. However, specific regularization prescriptions of 
singular potentials are familiar for path integrals: for instance, the l/r potential requires 
in a proper path integral representation a regularization through the KustaanheimAtiefel 
transformation [201, and the I / rZ potential by means of the Besselian functional weight 
[S, 211. In the path integral formulation the usual &function perturbation is quite a simple 
object 191 in comparison to the #-function perturbation as shown in this letter. It must be 
regularized by removing an ultraviolet divergence, cf (1 1). In fact both point interactions 
describe a particular kind of boundary condition of the wavefunctions in their domains at 
the location of the interaction. The even more singular two-and threedimensional point 
interactions also require a regularization prescription by means of their Green functions 
[IO], i.e. the removal of an ultraviolet divergence. 

The outcome of regularization (11) is quite satisfactory, and it shows that the ‘sum over 
paths’ in an exact summation of a perturbation expansion offers possibilities for the solution 
of problems which go beyond the usual ‘Gaussian sum over paths’. 
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The achieved results for a proper approach to 6- and 6’-function perturbations, and 
Dirichlet and Neumann boundary conditions respectively, in the language of Feynman path 
integrals proprly combined cover a wide range of problems in path integral techniques. 
What remains is to develop a path integral formalism to incorporate general boundary 
conditions, w h m  Dirichlet and Neumann boundary conditions are but special cases of 
multiple boundary conditions on the real line (e.g. combinations of step potentials). nese 
open questions will be the subject of fi~ture investigations. 

I would like to thank C Oldhoff for fruitful discussions. 
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