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LETTER TO THE EDITOR

&'-function perturbations and Neumann boundary conditions
by path integration

Christian Grosche

II Institut fitr Theoretische Physik, Umversniit Hamburg, Lumper Chaussee 149 22761
i Hamburg, Gem'nany ,

Recéived 22 Sqﬁ;embs;r 1994

Abstract. §'-function perturbations and Neumann boundary-conditions are incorporated into the

path integral formalism. The starting point is consideration of the path integral representation

- for the one—dunensmnal Dirac particle together with a relativistic point interaction. The non-

relativistic limit yields either the usual &-function or a §'-function perturbation; making their

-strengths infinitely repulsive one respectively obtains either Dirichlet or Neumann boundary
- conditions in the path intepral.

Attempts to incorporate Dirichlet and Neumann boundary conditions into the path integral
‘formalism have been described, for example, in Barut and Dure [1], Clark et al [2] and
Carrean et ol [3]. Barut and Duru nsed a canonical transformation to Hamilton—Jacobi
coordinates in a phase-space path integral to perform the path integration as explicitly as
possible yielding an integral representation of the Feynman kernel; they could also discuss
step potentials within their formalism. In [2,3] general boundary conditions were addressed,
but only for the free particle case.

In a previous paper I have discussed how to 1mplement Dirichlet boundary conditions
into the path integral [4]). This was achieved by considering a one-dimensional §-function
perturbation in the path integral. This problem can be solved in a straightforward manner
by means of a perturbation expansion [5-9] which can be explicitly summed yielding the
corresponding (energy-dependent) Green function GPNE) in terms of the non-perturbed
one G)(E), where V refers to an arbitrary potential which can be included [9]. Making
the strength of the 3-function infinitely repulsive yields Dirichlet boundary conditions at the
location of the §-function perturbation [10,11]. It is also desirable to have an analogous
representation for a 8- function perturbation. Making in this case the strength of the coupling
infinitely repulsive produces Neumann boundary conditions at the location of the §'-function.
However, the problem becomes awkward if one tries to use reasoning similar to that for the
usual §, for a &'-function perturbation in the path integral. An expansion into a perturbation
. expansion yields intérrelated complicated terms with no obvious resolution of the summation
problem. Alternatively, an approximation of the §'-function in terms of two normal é-
functions with distance ¢ « 1 and performing the limit € — 0 does not make sense in an
obvious way. Bearing this in mind and the fact that the existing literature concerning &'
function perturbations and Neumann boundary conditions in the path integral does not look
satisfactory, something new is needed and one has to look for an appropriate regulanzau:m
procedure to fill the gap.
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In this letter this problem is addressed by means of the path integral representation of
the one-dimensional Dirac particle [5]. The incorporation of a point interaction yields a two-
parameter family for the corresponding self-adjoint extension {10,12]: as particular cases,
one can choose, say, either the up (electron) or the down (posmon) component for the point
interaction to act upon. Consndenng a perturbation expansion for both problems, it is found
that they can be explicitly summed in terms of the corresponding Green functions (which
are 2 x 2 matrices). In the non-relativistic limit the former case yields the usual 3-function
perturbation, whereas in the latter we obtain the equivalent of a &'-function perturbation in
the path integral. I will concentrate on the latter case.

In the following I will outline how to implement point interactions in the one-
dimensional Dirac particle path integral. We automatically obtain in the case of the &'
function perturbation a correct regularization prescription in terms of the unperturbed Green
function G)(E). The general method for the time-ordered perturbation expansion is quite
simple. We assume that we have a potential W(x) = V{x) + V(x) in the path integral and
we suppose that W is so complicated that a direct path integration is not possible. However,
the path integral K} corresponding to V(x) is assumed to be known. We expand the path
integral contammg V(x) in a perturbation expansion about V (x) in the following way. The
initial kernel corresponding to V propagates in time At unperturbed, then it interacts with
V, propagates again for another time Af unperturbed, and so on, up to the final state. This
gives the series expansion [5-9] (x € R)

K" x;T) =KV, 1 T)+Z(__) (Hfrm f )

n=1
% KV(xp, 231y — WDKKV, 21302 — #1) X ++-
% V@) BV (s Xnets t ~ ta D V) KV 23 € = 1) (1)

IThave ordered time as t' = fg <t < fp < -- <‘t,,+1 = ¢” and paid attention to the fact
that K(; — 1;_1) is different from zero only if 4 > #_;. We consider the path integral
representation for the one-dimensional Dirac ‘particle [5 13-171 (p, = —ihd,):

d

x(‘MJ=;rl . i ‘ﬂ‘ ’
= f Dv(t) exp ( -z f Vix) dt). @
2()=x' ¢

V may be a matrix-valued potential. The support property of the measure Dy is defined in
such a way that the motion it describes selects paths of N steps each of length ce (¢ = T/N
in the lattice representation) that start at x’ in the direction ¢, and end at x” in the direction
B, where o and B take the values ‘right” and ‘left’. The path integration then is a summation
over all reversings of directions [5]. o, oy, o, are the Pauli matrices. We introduce the
Green function GY)(E) with its matrix representation

K(V).(x”,x’; T) = (x”

exp [—%T (coxpx +mco, -+ V(x))]

(V)(xn %3 E) G(V)(xﬂ x"; E)) @)

(VYrn it ot —_
G (x » X5 E) ( (V)(x,rf x E) G(V)(xﬂ' x E)

We first consider a §-function perfurbation in the electron (‘+’) component, ie. Vi =

— ( (1) g) d(x — a). By inserting it into the path integral and summing the perturbation
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expansion ‘we obtain
1
1/a—~ GV (a,a E)

G¥(a,x"; EYG (", a; E) G\ Na,x'; EYG (x", a; E)
G (a, x"; E)c-“”(x'{,a; E) Gg‘,”(a_x E)G(‘”(x" a; E)

G, x E)y =GV (2", X E) +
)

Similarly for the positron (*—") component, i.e. V_ = (4m?c*8/n%) (g ?) 8(x — a) (the
constants have been chosen for convenience), -

N |
?12/4m2c2ﬁ + G(V)(a a; E)

Gi‘z”(a ¥ EY6W " a: E) GV, x'; EYGP ", a; E)
G (a, x'; E)Gg‘.”(x" a; E). G“”(a,x,E)G“”(x", a; E)

G, ¥, E) =GV (", x', E) -

)

Let us assume for simplicity that the component G?{)(E) in (3) is known and V' is a scalar,
we can then derive ' :

¢
G(V}(x »E)= meGgr)(x, y;_E) | 6)
60, y: E) = —— C Oy B +5a—p). )
’ me+V+E \m2+V+ETTTN D

From these representations it is easily seen that if G(IY)(E) is of O(1) for ¢ — oo, G(V)(E)
and Gg)(E) vanish for ¢ — oo as thcy are o« 1/c and o 1/c?, respectively.

We consider the limit ¢ = oo in G¥I(E). On the one hand we know that the path
integral representation (2} gives the usuzl one-dimensional path mtegral in non-relativistic
quantum mechanics [3, 13-17];

x(r)=x" i
f Du(t)exp ( - = f Vix) dt)
x(t)=x kR Jy

1 x(t")=x" . & )
— (0 g) fxm:x' Dx(t)exp [%L [%xz - V(x)] dt] {c = o0)
®

where V(x) is the non-relativistic limit of V'(x). In the language of stochastic processes,
. the measure Dv yields in the limit ¢ — o0 the measure PW[x] (W being a Wiener
process, taken in real time, respecti\rfly, Wick rotated) which following {5] is interpreted
in the usual way as Dx exp((i/h) ftf £%dt), see, e.g., [18]. In the preéent case we find
[10,12] Vi (x) = Vo(x) = —ad(x —a), and V_(x) = Vi(x) = —B&'(x —a), respectively.
However, we find that only the (1, 1) component in the Green functions remains finite,
all others vanish. Furthermore, we find Gﬁ*)(E) > GO(E) and G('s“)(E) - GENE),
where G®(E) is the Green function for a potential problem V with the usual §-function
perturbation in non-relativistic quantum mechanics, and G®7(E) is the Green function
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for a potential problem V together with a &-function perturbation, respectively. Putting
everything together we obtain for the latter an explicit path integral representation yielding

x (e y=x"

. o '
9" X By =~ f dT =7/ f Dx(f)
. R Jo Hh=r

- t” .
X exp {% f I:gj;z —V(x)+ 88 (x — a)] dt} (9)
d
6P ", a; EYGYNE, x'; E)
GO, a; EY+1/8

=GV, x E) — (10

69 (a, a; E) = [3:3,GV (x, y; EY — 2m8(x — y)/A%]|zmya- an

The path integral (9) has thus been derived in a unique way through the regularization (3) in
the limit ¢ — co. Note that (11) automatically yields the correct (ultra-violet} regularization
of the formal expression ‘G()(a,a; EY. For V = 0, i.e. the free particle, we obtain the
explicit representation

: 1 N “ImE .,
Gy (", x'; E) = g\f—% exp (~ __.._: 1% —x’l)

_ m?expl—(V=2mE/B)(Ix" — al + |la — x'})]
nt 1/8 — m/—2mE /i3

sign(x” — a) sign(x’ — a).
(12)

For the propagator we obtain (using [19] p 246)

/ O Dty exp {i f,, 37 #pitc - ] dt}

#)=x' ;] 2
_ m im .,
=V 3zt OF (2.&1" = )
m _1_?;3_ " ! _ 2 | " : ! _
T exp [2?17‘ (x" —a|+1x' —a|) :| x sign(x" — a) sign(x’ — a)
B B, , i nt
+2m_ﬁexP [_E(lx —al+1x “a|)+;i‘§;§‘ﬁ—21"]
[m inT
x erfc { ?l% |:(|xl" —al 3 ]xf —al) - m—zﬁ] } sign(x” — a) sign(x’ — a)
| ‘ (13)
2 ' hz 6

i

- :’).mTﬁz T:I sign(x” — &) sign(x’ - a)

= ;B-exp I:—m—ﬁ(lx —al+x' —al)+

23 ‘
+ % jl; dpexp (—ig—m T) (sin px'sin px” + cos px’ cos px”

: 2
ImpB/R” _ ip(x-al+ie”

rE—y ~D sign(x” — a) sign(x’ — a)). (14)
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For 8 > 0, there is one bound state which has energy E = —7%/2m38%. The case 8 =0,
i.e. the free particle on the real line is easily recovered in equations (12) and (14). This
case is also reproduced in {13} by a proper § — 0 limiting procedure, which (14) provides.

Repeating the procedure for NV-fold 5’-funcnon perturbations snmlarly gives (compare
also [10], a; # a; (i # )

%,‘/;oo T ei:rgjm fx(:”)=x D_ftt) exp [ f [_x —Vix)+ Zﬁjﬁ Fx aj)] dz}

x(ty=x' j=1
GV (x", x'; E) G“”(x” @; E) i GV ay; E)
,,,(a,,x E) Gxx.,(al,aI,E)-i-l/ﬁ; qf;ii,,‘(a.',an; E)
“”(amx B . Wianiay .. Gaw,aw; BY+1/Bn |
= R L (9)
T A b ’ e W) (ar an:
G,I'I”(a]’ al, E) + I/ﬁ] e G'x;x”(a‘]_, aN, E)
(Vrlv(ah'sahE) oL lé(,:')xu(ai\r;;ah'; Ej+1/,3.rv

Of course, any combination of N-fold §-function and M-fold &'-function perturbations is
possnble yleldmg a closed expression in terms of the correspondmg Green functions.

Now making the coupling of the &'-function perturbation infinitely repulswe produces
Neumann boundary conditions atx =a, thus decoupling the regions (—oo a) and (a, 00),
ie.

i (rIJ)_IJf -z N !.u m '
~f1 dre‘Emf D{N)x(t)exp[ f [—x"-— V(‘x)] dr}
BJo pry e L2000 ‘

=cWux" x'  Ey— (V)(x” a; E)G(V)(a x'; E)/G(;’)x,,(a,a; E). (I6)

The notation DY) stands for Neumann boundary conditions at x = a, and for the

corresponding Green function in shorthand we write G:¥)(E).. Note that lim,_, _, G® (E)

‘= GUDONE), where D stands for Dirichlet bounda:y conditions T4, 11]. Of course, any

* combination of b0undary Condltlons of a particle moving in the box a < x < b is allowed
yleldmg closed expression in terms of the correspondmg Green functions. .

It is now obvious how to descnbe potential problems with absolute value dcpendence,

ie V= V(]x[) Combining the results for Dirichlet and Neurnann boundary condmons we

obtain the general formula . N . -

( (f"_)—,x i m -
f d.T eIET/?Jf ) Dx(t) exp { f [__xz = V(I.x D] dt}
x{t')y=x" ) e o 2 _
=6 B S GYD G K B + GG B L aT)
If the potential V already contains only even powers i x, such as the harmonic oscillatbi',

the Tast two terms in (17) cancel. Simple examples for'the general case are, for instance,
the double oscillator V(x) = imw?(|x| — a)%, the one-dimensional Coulomb problem
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V(x) = k|x}, or the symmetric potential well. For the one-dimensional Coulomb problem
one obtains, e.g., the quantization condition

A s o \3f2 ‘ ‘
K, (g-—wi"’k (—%) ) =0 (18)

with v = ;, 2 for the odd and even wavefunctions, respectively

In this letter I have presented a perturbation expansion approach to the problem of &’-
function perturbations and Neumann boundary conditions in the context of path integrals,
This was achieved by considering the path integral representation of the one-dimensional
Dirac particle with a é-function perturbation in the electron and positron components,
respectively V. and V_. I obtained the closed formulae (4), (5) for both problems in terms
of the corresponding energy-dependent Green function. For V_ a &-function perturbation
emerged in the non-relativistic limit in the path integral (9). Of course, both Green functions
represent Krein’s formula for the problem in question. This shows in a nice way that
in comparison to the Schridinger equation approach a properly defined (and regularized
if necessary) path integral provides a global picture of the problem in question, thus
giving comprehensive information about the physical system. However, whereas Krein's
formulae are usually derived by means of functional-analytical methods [10], we obtain
them by summing perturbation expansions. The necessary ingredients are the path integral
formulation of the one-dimensional Dirac patticle, including its non-relativistic limit, and
knowledge of Green’s function for the one-dimensional free Dirac particle. No additional
assumptions have been made. An analogous discussion for the electron component yields a
S-function perturbation in the path integral and Dirichlet boundary condition, respectively.
The formalism can be repeated in an obvious way to incorporate multiple - and §'-function
perturbations, and one can consider motion in a box @ < x < b with any combination of
Dirichlet and Neumann boundary conditions at the walls of the box. Analogously to [11]
one can also generalize our method to higher dimensions to derive path integral formulations
for &'-function perturbations, Dirichlet and Neumann boundary conditions along lires and
hyperplanes, etc.

I could also derive a general expression for potentials with absolute value dependence
by combining the results from Dirichiet and Neumann boundary conditions, ¢f (17). In
general, only the corresponding Green function can be stated.

The definition of the path integral of the &'-function perturbation and its (energy-
dependent) Green function via the path integral representation of the one-dimensional Dirac
particle fooks at first sight circumstantial. However, specific regularization prescriptions of
singular potentials are familiar for path integrals: for instance, the 1/r potential requires
in a proper path integral representation a regularization through the Kustaanheimo—Stiefel
transformation [20], and the 1/r? potential by means of the Besselian functional weight
[8.21]. In the path integral formulation the usual é-function perturbation is quite a simple
object [9] in comparison to the §'-function perturbation as shown in this letter. It must be
regularized by removing an ultraviolet divergence, cf (11). In fact both point interactions
describe a particular kind of boundary condition of the wavefunctions in their domains at
the location of the interaction. The even more singular two-and three-dimensional point
interactions also require a regularization prescription by means of their Green functions
[10], i.e. the removal of an ultraviolet divergence.

The outcome of regularization (11) is quite satisfactory, and it shows that the ‘sum over
paths’ in an exact summation of a perturbation expansion offers possibilities for the solution
of problems which go beyond the usual ‘Gaussian sum over paths’,
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The achieved results for a proper approach to 3- and &'-function perturbations, and
Dirichlet and Neumann boundary conditions respectively, in the language of Feynman path
integrals properly combined cover a wide range of problems in path integral techniques.
What remains is to develop a path integral formalism to incorporate general boundary
conditions, where Dirichlet and Neumann boundary conditions are but special cases of
multiple boundary conditions on the real line (e.g. combinations of step potentials). These
open questions will be the subject of future investigations.

T would like to thank C Oldhoff for fruitful discussions.
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